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Summary

The high frequency code has been made an interactive code using
FORTRAN 5.0 (1). The option to plot n-1 curves was added using the
graphics routines of FORTRAN 5.0 (2) and GRAFMATIC (3). The user is
now able to run with input values non-dimensional (as in the original
code) or dimensional. Input data may be modified from the keyboard.

The low and intermediate frequency codes have been run through a set
of input variations. This will help the user to understand how the
stability of a configuration will change if any of the input data

changes.
In addition to the final report, the following will be furnished:

1. User manuals for all four codes

2. Microsoft FORIRAN 5.0 manuals and disks
3. Grafmatic manual and disks

4. Briefing notes with homework problems
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1.0 Introduction

The development of codes for stability analysis of liquid propellant
rockets by UBH contract no. NAS8-36955 began in 1989. The primary
reference was Harrje and Reardon (4). The first low frequency codes
were written for the Macintosh using MATHEMATICA. Intermediate
frequency equations were developed from Harrje and Reardon. And for
the high frequency effort, the code developed by Mitchell (5,6) at
Colorado State University was obtained. The codes on the Mac were
slow, therefore they were programmed in FORTRAN for the PC. The first
years work culminated in the report UAH 5-32176 (7).

The FORTRAN codes were expanded to include accumilators, pumps, and
pipes split into identical lines. Graphics were added to the low and
intermediate codes. The high frequency code was run on the PC for
several configurations. The second years work was presented in the
report URH 5-32441 (8).

This year the low and intermediate codes were refined for easier use.
Also, the split pipe option was expanded to allow the splitting of a
pipe into different lines. This included the ability to handle
multiple tanks and multiple engines. Briefing notes for these three
codes were developed. The notes included two sample runs and a
hamework problem.

The high frequency code was a major effort this year. The input was

campressed and simplified. The input can now be dimensional as well

as non-dimensional (as with Mitchell's original version). The output
was also simplified and reformatted to fit into 80 columns. Plots of
the n-7 curve are available if running option 3. The input data may

be modified interactively.

This report will first cover the effort on the high freguency code
(HIFREQ) . Then, the effect of input variations on the low and
intermediate frequency codes (ADMIT, NYQUIST, SSFRBQ) will be
discussed.



2.0 High Frequency Code (HIFREQ)

The high frequency code was cobtained under the auspices of the USAF
and we have been in contact with the author, Dr. Mitchell at Colorado
State University. The program was written for a VAX computer and has
been modified to run on a PC. Other enhancements have been made.

2.1 Introduction and Background

Dr. Mitchell, at Colorado State University, and his students began
a number of years ago to develop codes to predict the high fregquency
oscillations in a liquid propellant engine (9). These codes and
associated theory were developed over the years. All of these codes
were developed for mainframe or mini computers.

In 1989, Mitchell developed FDORC for the Air Force (5,6). This code
was developed to run on a VAX mini-computer. The Air Force released a
copy of this code and the report describing the code for use on this
project.

The code was converted at UAH to run on a PC. This mainly consisted
of reducing the size of certain arrays (that the code had already
specified an upper limit smaller than the dimensions).

2.2 Brief Description of Mitchell's Code

FDORC represents the full three-dimensional combustor model. The code
includes a distributed combustion analysis which allows the combustion
zone to be split into several equal length zones of varying mass
release profiles. Three modes of oscillation are handled; radial,
transverse, and lorgitudinal. No coupling with the piping is
considered because of the high frequencies the program is designed to
analyze. The effect of different acoustic cavity types can be
investigated. Cavity types available are the following: quarter wave
tube, Helmholtz resonator, long aperture resonator, and variable
geometry -variable mean temperature absorber. Multi-tuned absorbers
oriented radially or axially can be examined.

The code has three main running options:

1 - a given combustion response is input and the resulting
complex frequency is calculated.

2 -~ interaction index (n) and time lag (7) are input and
the resulting complex frequency is calculated.

3 - for a given frequency the combustion response, n, and 71
are determined. This is the option used to generate data
for n-r stability maps.

The code requires the input to be non-dimensionalized and the output
is also non-dimensionalized. The input is read on up to 7 different
files. The number of input files depends upon the problem to be
solved. If no absorbers are present and no pressure profiles desired,
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then only two input files are necessary.

All input is from and to files because the code was written for batch
operation only. Thus, to obtain a n-7 plot, the file 'NTPLOT' or
'ZNTAU' had to be input into a plot program. Changes to the input
data had to be made between runs.

2.3 Description of the Changes Made to Code

The program was extensively modified to allow the user more control,
easier input, graphic ocutput, and interactive data modification. The
changes can be grouped into three general areas: input, output, and
interactive.

Input Changes:

1. Input may be input dimensional or non-dimensicnal.

2. If input is dimensional, chamber radius, pressure,
temperature, and molecular weight must be input.

3. If input is dimensional, frequency may be in Hertz or rad/sec.

4. Input was expanded and regrouped into logical units.

5. Input was compacted into one file, not seven files.

6. The input is checked for invalid modes.

7. On input, where flags were used to signal the code to read in
a counter, the flags have become the counters and the separate
read for the counters has been removed.

8. If DEIOM is an integral number, then it is used as the number
of frequencies desired. If not integral, it is used as the
frequency increment.

Output Charges:
1. If input is dimensional, output may be dimensional or
non-dimensional.
2. Formats were modified to allow dimensional output.
3. Output was limited to 80 columns in order to be viewed on the
screen.
4. The output file 'NTPLOT' was removed as it is not needed.

Interactive Additions:

1. The program may be run in batch or interactive mode.

2. n, 7, and 1 are written to the screen in interactive mode with
OPTION=3.

3. n vs 7 plots may be made in interactive mode with OPTION=3.

4. Input may be changed interactively with the keyboard.

5. For a given mode, the user has the option to compute and
display fundamental frequency. Then the user may input the
frequency range desired.

The n—-7 plots for both dimensional (fig. 1) and non-dimensional
(fig. 2) data for a sample case furnished by Dr. Mitchell are given.
Since they are for the same configuration and frequency range, the
graphs are the same.



3.0 Effect of Input Variations

In order to get a feel for the codes and how various input affect the
results, a series of runs were made on variations on a straight pipe.
A one foot diameter pipe 86 feet long was used as the basis. The
effects of various parameters on the output from the three programs
were studied by choosing a basic configuration and varying the input
one parameter at a time. When the admittance locking toward the tank
was affected, the output of all three programs were affected. When
the admittance loocking toward the tank was unchanged (or had a small
change) for a change in tank, piping, or engine input, the results
from NYQUIST and SSFREQ are unaffected.

Another effect to notice is that bends in a pipe do not greatly affect
the admittance locking toward the tank. The only effect of a berd is
the change in effective length and diameter of the pipe on the
admittance looking toward the tank. However, bends do affect the
admittance when locking toward the engine. Thus, bends have an effect
on the pressure transfer function.

For the 3-way equally split pipe, only the results from one engine is
presented because the three lines are almost identical. The 3-way
unequal split pipe has lines 1 and 3 the same therefore only engine 1
and engine 2 results are presented.

This st:udy will first present the results of the basic configuration.
The piping variations will be run next. Following these, tank and
engine variations are presented. Changes that only affect the results
of NYQUIST are given next followed by those that only affect SSFREQ
results. Description of the input is given in the users manuals.

Variations used by ADMIT, NYQUIST, and SSFREQ

1. Basic configuration
1' diameter straight pipe 86' long

tank volume = 4,055 ft3
mass flow = 2,264 llm/sec
bulk modulus = 1.185883E+07 lbf/ft2
density = 72.13 ll:m/ft
manifold volume = 4.5 ft3
bulk modulus = 1.183346E+07 lbf/ft2
engine mass flow = 3,112 lbm/sec
pressure = 95,040 1lbf/ft2
pressure drop = 44,640 lbf/ft?

Piping variations

2. 20' shorter length
1' diameter straight pipe 66' lorng

3. Double diameter - 2°'
2' diameter straight pipe 86' long



4, 10 90 deg bend (middle section 10' long)
1' diameter straight pipe 30' long
-90 deg bend 1' diameter
1' diameter straight pipe 4' long
+90 deg bend 1' diameter
1' diameter straight pipe 10' long
+90 deg bend 1' diameter
1' diameter straight pipe 4' long
-90 deg bend 1' diameter
1' diameter straight pipe 30' long

5. 30! 90 deg bend (middle section 30' long)

1' diameter straight pipe 20' long

-90 deg bend 1' diameter

1' diameter straight pipe 4' long

+90 deg bend 1' diameter

1' diameter straight pipe 30' long

+90 deg bend 1' diameter

1' diameter straight pipe 4' long

-90 deg bend 1' diameter

1' diameter straight pipe 20' long

6. 50! 90 deg bend (middle section 50' long)
1' diameter straight pipe 10' long
-90 deg bend 1' diameter
1' diameter straight pipe 4' long
+90 deg bend 1' diameter
1' diameter straight pipe 50' long
+90 deg bend 1' diameter
1' diameter straight pipe 4' long
-90 deg bend 1' diameter
1' diameter straight pipe 10' long

7. 3-way equal split (only engine #1 plotted - all the same)
1' diameter straight pipe 64' long
(3 pipe split)
1) 0.57735' diameter pipe 22' long
engine mass flow 1,037.333 llm/sec
pressure 95,040 1bf/ft
pressure drop = 44,640 1bf/ft2
2) 0.57735' diameter pipe 22' long
engine mass flow 1,037.333 llm/sec
pressure 95,040 lbf/ft
pressure drop = 44,640 lbf/ft2
3) 0.57735' diameter pipe 22' long
engine mass flow 1,037.333 llm/sec
pressure 95,040 1bf/ft:
pressure drop = 44,640 1bf/ft2



8. 3-way unequal split (engines #1 and #2 plotted - #3 = #1)
1' diameter straight pipe 64' long
(3 pipe split)
1) 0.5' diameter pipe 22' long
engine mass flow 777.8 lkm/sec
pressure 95,040 1bf/ft2
pressure drop = 44,640 1bf/ft?
2) 0.70711' diameter pipe 22' long
engine mass flow 1,556 llbm/sec
pressure 95,040 1bf/ft2
pressure drop = 44,640 1bf/ft?
3) 0.5' diameter pipe 22' long
engine mass flow 777.8 lm/sec
pressure 95,040 1bf/ft?
pressure drop = 44,640 lbf/ft2

Tank variations

9. Daubled tank volume
tank volume = 8,110 ft3

10. Halved mass flow
tank mass flow = 1,132 lbm/sec

11. Doubled bulk modulus
tank bulk modulus

2.371766E+07 1bf/ft2

12. Doubled density
tank density = 144.26 lbm/ft3

Engine variations

13. Doubled engine mass flow
engine mass flow = 6,224 llm/sec

14. Doubled engine pressure
engine pressure = 190,080 1bf/ft2

15. Doubled engine dP
engine pressure drop = 89,280 lbf/ft2

Used only by NYQUIST

1. Basic configuration

taut = 0.001 sec
cstar = 6,219 ft/sec
rbar = 2.67
thetac = 0.00233 sec
dc/dr = =315

16. Doubled taut
taut = 0.002 sec



17.

18.

19.

20.

Doubled cstar

cstar = 12,438 ft/sec
Doubled rbar

rbar = 5.34
Doubled thetac

thetac = 0.00466 sec
Doubled dc/dr

dc/dr = =630

Used only by SSFREQ

1.

21.

22.

23.

24.

25.

26.

27.

Basic configuration
4' long combustion zone with constant
pressure (95,040 lbf/ft2) and
temperature (4000 °R). Two stations used.

invariant time lag = 0.000697 sec
mixture ratio interaction index = 0.01
damping = 0.0

chamber diameter = 3.214 ft

throat diameter = 2.232 ft

chamber length = 4.0 ft

ratio of specific heats = 1.2

gas constant 1,716 (ft/sec)2/°R

maximum overpressure 142,500 1bf/ft2

mixture ratio 2.67
dcs/dr -315 ft/sec
dhl/dr = 0.01 (ft/sec)?

liquid mass/chamber volume = 0.44 llkm/ft3
axial component liquid velocity = 1965 ft/sec

Doubled chamber diameter
chamber diameter = 6.428 ft

Halved throat diameter
throat diameter = 1.116 ft

20% longer chamber length
chamber length = 4,8 ft

Doubled dcs/dr
des/dr

-630 ft/sec

Doubled dhl/dr

dhl/dr 0.02 (ft/sec)?

Doubled rholo
liquid mass/chamber volume = 0.88 lkm/ft3

Doubled ulo
axial component liquid velocity = 3,930 ft/sec
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3.1 ADMIT

The results of the ADMIT runs are displayed with each figure
containing 3 plots; piping layout and admittance, surface plot of
pressure transfer function, and contour plot of pressure transfer
function. The basic configuration is shown in fig. 3. The
variations will be compared to this plot.

changing the length of the pipe only changes the number of cycles
present, but the shape and amplitude are not changed (fig. 4).
Changing the diameter does change the shape of the admittance curve
(fig. 5). It also changes the pressure transfer function.

If bends are added which do not change the effective length and
diameter of a pipe, the admittance is not affected (figs. 6, 7, & 8).
The additions of bends do change the pressure transfer function. The
placement of the bends also has an affect on the pressure transfer
function.

When a pipe splits into several pipes, there is an effect on both the
admittance and the pressure transfer function. The effects of a 3-way
equal split (fig. 9) and for an unequal split (figs. 10 & 11) are
shown. Note that for the unequal split the admittance for different
engines are different, but the pressure transfer function is almost
the same.

Changing tank volume has little effect on the results (fig. 12).
Changing mass flow primarily affects amplitude (fig. 13). A change in
bulk modulus (fig. 14) or density (fig. 15) changes the number of
cycles in the admittance curve and the number of nodes in the pressure
transfer function.

A change in engine mass flow changes the amplitude of the admittance,
but has no effect on the pressure transfer function (fig. 16).

¢hanges in engine pressure has a similar effect (fig. 17) except the
amplitude changes in the opposite direction. A change in the pressure
drop across the orifice affect the shape of the admittance curve and
the amplitude of both the admittance curve and pressure transfer
function (fig. 18).



3.2 NYQUIST

The NYQUIST results are shown for only the LOX piping present. When
there is little or no change in the admittance curve, there will be
little or no change in the NYQUIST curves. Each figure gives the
Nyquist plot and the phase-gain plots. Compare the variation results
to the basic configuration (fig. 19).

A length change only changes the number of cycles present (fig. 20).
Changing the diameter of the pipe changes the shapes of the curves
(fig. 21). As the insertion of bends had little effect on the
admittance curve, they have little effect on the Nyquist and phase-
gain plots (figs. 22, 23, & 24).

A pipe split has a profound effect on the results. The 3-way equal
split is shown in fig. 25. The two different engine results are
different from each other and the basic configuration (figs. 26 & 27).

As before, changing tank volume has little effect on the NYQUIST
results (fig. 28). Changing mass flow primarily affects amplitude
(fig. 29). A change in bulk modulus changes the number of cycles in
the Nyquist curve and the shape of the phase-gain curves (fig. 30). A
density variation changes the number of cycles in the Nyquist and
phase-gain curves (fig. 31).

A charge in engine mass flow (fig. 32) and in engine pressure (fig.33)
mainly change the amplitude. A change in the pressure drop across the
orifice affect the shape and amplitude of the curves (fig. 34).

The final variations were the NYQUIST only changes. Doubling the
values had very little effect for transport lag (fig. 35),
characteristic velocity (fig. 36), or mixture ratio (fig. 37).
thanging characteristic time constant (fig. 38) and change in
characteristic velocity with mixture ratio (fig. 39) show more change
in the Nyquist plot and/or the phase-gain plot.



3.3 SSFREQ

The intermediate mode code requires both the IOX and fuel line to be
present. The fuel line was identical to the lox line except for the
mass flow (848 lbm/sec). As only one plot (in most cases) is produced
per configuration, three figures are placed on a page. Again, compare
the variation results to the basic configuration results (fig. 40).

Note that the frequency for the intermediate mode is considerably
higher than for the low frequency codes. For most cases, simply lock
at the amplitude of n as most of the curve shapes are the same. An
exception is for the doubled engine mass flow.

The effects of length (fig. 41) and diameter (fig. 42) show changes in
the level of minimum n. The additions of length and diameter
preserving bends have little effect (figs. 43, 44, & 45). Both equal
splits (fig. 46) and unequal splits (fig. 47 & 48) show a shift in the
minimm n value.

Changes in tank volume (fig. 49), mass flow (fig. 50), bulk modulus
(fig. 51), and density (fig. 52) show primarily level changes, scme
small and some large.

Doubling engine mass flow actually makes it go unstable at 110 Hertz
(fig. 53). Changing engine pressure (fig. 54) and pressure drop
across the orifice (fig. 55) have smaller effects.

The SSFREQ charges are presented next. The level of the minimm n
value is the primary effect. The results are given for doubled
chamber diameter (fig. 56), halved throat diameter (fig. 57), 20%
longer chamber length (fig. 58), doubled change in characteristic
velocity with mixture ratio (fig. 59), doubled change in enthalpy with
mixture ratio (fig. 60), doubled liquid density (fig. 61), and doubled
liquid axial velocity (fig. 62). Some of the changes also tended to
flatten out the n-t curve.
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4.0 Conclusions and Recommendations

Four codes have been developed for the PC to analyze the stability of
liquid propellant rockets. The low and intermediate frequency codes
were developed in their entirety at the UAH Research Institute. The
high frequency code is the result of extensive modifications of a code
developed by Dr. Mitchell at Colorado State University.

The four codes have interactive capability, plot results on-line, and
allow input data to be modified from the keyboard. Each of the codes
have a users manual to help with running the program. The low and
intermediate freguency codes have a set of briefing notes to assist in
teaching the use of the codes. A homework problem is included in the
briefing notes.

It is recommended that the user becomes familiar with the codes to the
extent that he may make FORTRAN changes to allow the codes to remain
current. Also, more or different graphics may be desired. No program
is static, it is dynamic. Therefore, changes must be made or the code
will die.
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6.0 Figures

Figure

Description

Dimensional HIFREQ n-7 plot
Non-dimensional HIFREQ n-7 plot

NYQUIST
NYQUIST
NYQUIST
NYQUIST
NYQUIST
NYQUIST
NYQUIST
NYQUIST
NYQUIST
NYQUIST
NYQUIST
NYQUIST
NYQUIST
NYQUIST
NYQUIST
NYQUIST
NYQUIST
NYQUIST
NYQUIST
NYQUIST
NYQUIST

Basic configuration

20' shorter length

Double diameter - 2!

10! 90 deg bend

30! 90 deg bend

50! 90 deg bend

3-way equal split

3-way unequal split engine # 1
3-way unequal split engine # 2
Doubled tank volume

Halved mass flow

Doubled bulk modulus

Doubled density

Doubled engine mass flow
Doubled engine pressure
Doubled engine dP

- Basic configquration

= 20' shorter length

- Double diameter - 2!

- 10° 90 deg bend

- 30° 90 deg bend

- 50 90 deg bend

- 3-way equal split

- 3-way unequal split engine # 1
- 3-way unequal split engine # 2
= Doubled tank volume

= Halved mass flow

-~ Doubled bulk modulus

- Doubled density

- Doubled engine mass flow
- Doubled engine pressure
- Doubled engine dP

- Doubled taut

-~ Doubled cstar

- Doubled rbar

= Doubled thetac

- Doubled dc/dr

SSFREQ - Basic configuration
SSFREQ - 20' shorter length
SSFREQ - Double diameter - 2!
SSFREQ - 10! 90 deg bend
SSFREQ - 30! 90 deg bend
SSFREQ - 50 90 deg bend
SSFREQ - 3-way equal split
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47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

SSFREQ -
SSFREQ -
SSFREQ -
SSFREQ -
SSFREQ -
SSFREQ -
SSFREQ -
SSFREQ -
SSFREQ -
SSFREQ -
SSFREQ -
SSFREQ -
SSFREQ -
SSFREQ -
SSFREQ -
SSFREQ) -

3-way unequal split engine # 1
3-way unequal split engine # 2
Doubled tank volume

Halved mass flow

Doubled bulk modulus

Doubled density

Doubled engine mass flow
Doubled engine pressure
Doubled engine dP

Doubled chamber diameter
Halved throat diameter

20% longer chamber length
Doubled dcs/dr

Doubled dhl/dr

Doubled rholo

Doubled ulo
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Dimensional Mitckell's data B7.446M 85-27-72

L2t}
8.5

B.42-

.88 : : : ‘ :
8.7% 1.89 1.4 174 280 1.3

taulsec) x 1088

Figure 1
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Non-dimensional Kitchell's data

2.83¢
1.7+
1.28+

8.85r

8.42-

9.88

87:56aM  85-27-92

8.69

.99

1.29

tau

1.58 1.88

Figure 2
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